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Abstract

An important function of communication networks is to implement reliable data transfer
over an unreliable underlying network. Formal specifications are given for reliable and unreliable
communication layers, in terms of I/O automata. Based on these specifications, it is proved that
no reliable communication protocol can tolerate crashes of the processors on which the protocol
runs.
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1 Introduction

Modern computers do not usually operate inisolation, but are connected to other computers by data
communication media. Networking software is provided to enable users -and application programs
located at- different machines to-interact. This software is often- complicated - in fact, it sometimes
occupies more of the resources- used by -system software than does the-operating system kernel.
In order to control the complexity of networking software, and also to enable different machines
in a network to run different networking software, a layered architecture is often used. There
are many different layered architectures in use in proprietary, governmental, and international
networks [20, 19, 6, 14]. While the exact -choice of function for each layer differs in the various
networks, the general -framework is always the same: each layer acts according to-a protocol that
uses the services of the next lower layer, in order -to provide enhanced features. For example, in
the OSI architecture, the network layer uses a service providing reliable communication between
directly connected machines, and provides -communication between machines that are connected
only indirectly. A general account of layering can be found- in [16].

Reliable delivery of information is one important service that is provided in at least one layer in
most layered networks. For example, the HDLC piotocol for the data link layer of the OSI architec-
ture [20] provides reliable transfer of data between directly connected machines, using the physical
layer service of an unreliable bit channel: the physical layer-can generally corrupt, lose or duplicate
messages, but the IHDLC protocol guarantees exactly-once, FIFO delivery. In layered architectures,
data corruption is often detected using checksums, and the loss of a message is compensated for by
retransmission. Such retransmissions can lead to the arrival of duplicate messages. Since a reliable
service must not pass duplicate messages to the higher layers, each message is usually tagged with a
sequence number, which is also mentioned in the corresponding acknowledgment.. Many algorithms
have been developed- based on these ideas, such as the Alternating Bit Protocol [3], in which only
the low order bit of the sequence number is actually used. Common protocols such as HDLC use
these algorithms.

Protocols based on tagging messages with a sequence number require each end station to -re-
member the current sequence number. If this information is kept in volatile storage, and if a crash
destroys that storage at one station, -then the protocol will be restarted at that station in its initial
state, and therefore will assign sequence number 1 (as initially) to the next message. If the other
station were still expecting a different sequence number, the first message after the crash might not
be delivered. (It might be treated like a retransmission of a previous message and ignored.) Thus,
some mechanism is needed in the protocol for one station to cause the other to also reinitialize its
sequence number.

One such mechanism is for the station on the machine that has crashed to send a special control
message-to the other station. (In HDLC this is a "Set Normal Response Mode" (SNRM) message.)
When this control message is received, the other station reinitializes its sequence number and other
data structures. The control message is acknowledged by its recipient, and data messages (or data
acknowledgments) are sent by the station on the crashed machine only after the reinitialization
acknowledgment has been- received. Of course, the reinitialization message itself might be lost;
to handle this possibility, the crashed station uses a timeout to determine when to resend the
reinitialization message. The HDLC reinitialization protocol is based on the ideas just sketched.
In [4],fBaratz and Segal examine this protocol, and find it to be incorrect in that reliable delivery
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isnot guaranteed even for messages sent after-reinitialization has completed That is, it is pos -ible
for a pattern of failure and message delay to cause an execution of the protocol in which-a sequr?, ce
of -data-items is -accepted from the higher layer at one-end after reinitialization, but the sequer.-.
delivered-at the-other end is different.

In [4], Baratz- and Segall present an -alternative mechanism for reinitializing the sequence num-
bers and other data structures; their mechanism is applicable -to a wide range of reliable commru
nication protocols. Their method involves tagging the reinitialization control messages and their
acknowledgments with a-bit whose value alternates between reinitialization episodes. This bit must
be remembered -across crashes, and therefore it cannot-be stored in volatile memory.' Baratz and
Segall conjecture that some non-volatile storage is needed in any protocol that reinitializes valucs
so as to provide reliable -data- transfer after reinitialization has completed. This paper is devoted
to -formalizing -this impossibility claim and proving it rigorously.

Formal correctness proofs for particular communication protocols are fairly common in the
study of computer networks, but there are few examples so far of impossibility results. A survey
of such results in distributed computation can be found in [9]. Proving an impossibility result
requires a formal model for specifications in which one can describe the t~sk being considered, a
formal model for implementations in which one can express any conceivable protocol to perform
the given-task, and a definition of when a protocol (as described in the-model), is correct according
to a specification (as described in the model). In this paper we use -the input/output automaton
model from [11, 12] for these purposes.

In order to state an-imDossibility result in the strongest-form, one-should specify the task-to-be
performed in as weak a fashion as possible; that is, the specification should place few requirements
on the -protocol. :(Of course, the task must not be described so weakly that it becomes possible to
accomplish it!) In thk paper, the task is reliable data communication -using the unreliable service
of a lower layer. We use a -weak specification for reliable data communication, wlich states that
each message is-delivered at most once, and that every message sent after thc:last crash is delivered-
exactly once. ThIs specification does not include stronger guarantees such as reliable delivery
of messages sent before a crash, or FIFO delivery of- those messages that are delivered. While
such properties are desirable for umers of a reliable communication service, they are not necessary
for -proving our impossibility result. The impossibility result we give for the weak specification
immediately implies corresponding impossibility results for specifications with stronger guarantees.

Since the reliable layer uses the lower unreliable layer without knowledge of the details of the
lower layer's implementation, a correct protocol is required to work correctly with every implemen-
tation of the unreliable layer. Thus, to make the impossibility result as strong as possible, one
should make the description of the lower layer as strong as possible; this places fewer requirements
on the protocol, since it is then required to work with fewer implementations of the unreliable
layer, i.e., those having-strong constraints. We use a strong specification for unreliable data-com-
munication, which allows messages to be lost, but does-guarantee at-most-once FIFO delivery. The
impossibility result we state in terms of an unreliable layer with these strong guarantees applies a
fortiori to situations where the reliable layer must cope with a larger range of faults in the unreliable
layer.

'Since the value of this bit is not used during normal operation, there is little practical disadvantage in keeping it
on disk.
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As an example of the application of the impossibility result, the ISO transport protocol Llass
4 and Internet TCP protocols provide ordered reliable end-to-end service using a network service
that may lose or reorder data. Since the requirements for reliable message delivery are stronger
than -those in our result and the assumptions about the unreliable layer are weaker than those in
our result, our impossibility result applies to this situation. It implies that for these protocols to
guarantee to correctly initialize a connection after a crash, there must be some information that
survives the crash.

LJa practice, there are several ways in which systems cope with the limitation expressed by
the impossibility result. First, some existing protocols (such as HDLC at the data link layer)
simply behave incorrectly in some cases. The "reliable" layer may lose a message in the face of
certain (unlikely) combinations of requests, crashes, and message delays. This is often accepted
by system designers on the basis that the errors only happen infrequently, and even when they
occur,-higher layers of the system may be able to recover from the problem. Second, soxre systems
keep data that is not volatile, and so will survive a crash of a machine on which the protoco'5 is
running. For transport protocols, a hardware clock is sometimes used. This provides information
about the current time, and therefore does not return to the initial state when a crash occurs.
Another strategy involves keeping a counter known as an incarnation number in non-volatile disk
storage, and incrementing it after each crash. Transport layer control messages are tagged with the
incarnation number, which enables the protocol to recognize old connection requestA. Third, some
systems require still stronger assumptions about the unreliable layer than we use. For instance,
some existing transport protocols insist that the network layer enforce a known maximum time
within which each message must be delivered or destroyed. When the network layer is restricted in
this way, correct transport initialization protocols can be obtained, but at the cost of introducing
dependencies between the settings of time parameters in different layers. Several of these techniques
are described in more detail in [7].

There are several other impossibility results in the literature for communication problems. A
sketch of a proof that no protocol can reliably provide either delivery or notification o- iondelivery
for all messages, including those sent before a crash, is given in [5]. In [8] is a proof that correct
connection establishment is impossible when the protocol has a particular form: a single resynchro-
nizing message is sent and acknowledged if no data message is successfully delivered within a fixed
timeout period, and each data message is- retransmitted after a (possibly different) timeout, until
it is acknowledged. The paper [2] contains a number of impossibility results for synchronous pro-
tocols, specifically, lower bounds for the number of states requirad to solve various communication
problems. The paper [1] contains an impossibility proof for reliable transmission using a number
of messages that is bounded in the best case, regardless of past faLlts, when the messages have
bounded headers and the unreliable layer can reorder data messages. Related impossibiliy results
concerning the use of bounded headers with non-FIFO unreliable layers are found in [18, 13, 17].

The rest of the paper is organized as follows. Section 2 contains a summary of the relevant
definitions from the input/output automaton model. Section 3 contains a specific.Ltion of a rcliable
layer, which represents the reliable communication task to be performed. Section 4 contains a
specification of the unreliable layer, which the protocol is assumed to have available for its use.
Section 5 defines what it means for a protocol to be correct accurding to the given specifications.
Finally, Section 6 contains the impossibility result.
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2 The I/O Automaton Model

The input/output automaton model was, defined in [11] as a tool for modeling concurrent and
distribatd systems. We refer the reader to[11] and to the-expository paper [12] for -a complete
development of the model, plus motivation and examples. Here, we provide a brief summary-of
those aspects of the model that are needed-for -our results.

2.1 Actions and Action Signatures

Fundamental to the- model is the identification of the actions possible between an entity and ;-

environment, and the separation of those-actions into types -depending on where-the occurrence -is
coitrolled. An entity has inputs which are under :the control of the environment, outputs which
are -under the control of the entity and detectable by the environment, and internal actions which
are controlled by the entity but not detectable by the environment.

.Foimally, an action signature S is an ordered triple consisting of three pairwise-disjoint sets of
actions. We write in(S), out(S) and int(S) for the three components of S, and-refer to the actions
in- the three sets as the input actions, output actions and internal actions of S, respectively. We
let-ext(S) = in(S) U out(S) and-refer to the actions in ext(S)-as the external actions of S. We let
acts(S) = in(S) U out(S) U int(S), and refer to the-actions in acts(S) as the actions of S.

2.2 Input/Output Automata-

In the I/O automaton model, a computational entity (either a whole system, or a process or node
within a system) is modeled by a state machine. Formally, an input/output automaton A (also
called an I/O automaton or simply an automaton) consists-of five components:

1. an action signature- sig(A),

2. -a set states(A) of states,

3. a nonempty set start(A) _ states(A) of start states,

4. a transition relation steps(A) _ (states(A) x acts(sig(A)) x states(A)), with the property
that for every state s' and-input action 7r there is a transition (s',7r,s) in steps(A), and

5. an equivalence relation part(A) on out(sig(A)) U int(sig(A)), having at most countably many
equivalence classes.

For brevity, we write in(A) for in(sig(A)), out(A) for out(sig(A)), and so on.
We refer to an element (s', ir, s) of steps(A) as a step of A. If (s', ir, s) is a step of A, then 7r is

said to be enabled in s'. Since every input action is enabled- in every state, automata are said to
be input- enabled. The partition part(A) is an abstract description of the underlying components
of the automaton, and is used t define fairness.

An execution fragment of A-is a finite sequence So-'&s11r2 ... tensn or an infinite sequence
S07rs 17r2 . ... rs,... of alternating states and actions of A such that (sitr +l,s+,) is a step of A
for every i. An execution fragment beginning with a start state is called an execution.

A fair e-'ecution of an aut "naton A is defined to be an execution a of A such that the following
condition holds for each class C of part(A): if a is finite, then no action of C is enabled in the
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final ('tate of c, while if a is infinite, then either ca contains infinitely many events from C, or else
a contains infinitely many occurrences of states in which no action of C is enabled. Thus, a fair

-execution gives "fair turns" to each class of part(A). Informally, one class of part(A) typically
consists- of all -the actions that are controlled by a single subsystem within the system modeled
by the -automaton A, and so fairness means- giving each such subsystem regular opportunities to
take a step under its control, if any is enabled. In the common case that there is no lower level of
-structure to- the system modeled by A (when part(A) consists of a single class), a fair execution
is an -execution-in which infinitely often the automaton is given an opportunity to take an action
under its control if any is enabled.

The- behavior of an -execution fragment a of A is- the subsequence of a consisting of external
actions, and is-denoted by beh(a). That is, beh(a) is-formed -by removing-from the sequence a all
states and also those -actions- in int(A). We say that / is a behavior of A if-# is the behavior of
an execution of A. We say that P is a fair behavior-of A if 0 is the behavior of a fair execution
of A. When an algorithm is modeled as an I/O automaton, it is the set of fair behaviors of the
-automaton: that reflect the activity of the algorithm that is important -to users.

We-sal that a finite behavior P of A can leave A in state s if there is a finite execution a with
P as, its behavior, such that the final state in a is s.

A fundamental operation that we sometimes apply to sequence 0 of actions (or other elements),
such as -a behavior, is to take the subsequence consisting of those actions that are in a set !P of
actions. We call this the-projection of 6 on k,-and denote it by /,P. For brevity, we write PIA for
Placts(A).

2.3 Composition

The-most -useful way of combining I/O automata is by means of a composition operator, as defined
in this subsection. This models the way algorithms interact, as for example when the pieces of a
communication protocol at different nodes and a lower-level protocol all work together to provide
a- higher-level service.

A collection {Ai~i}6 of automata is said to be strongly compatible if no action is-an output of
more than one automaton in the collection, any internal action of any automaton does not appear
in the signature of another automat.)n in the collection, and no action occurs in the signatures of
an infinite number of automata in the collection. Formally, we require that for all i, J E 1, i ,
we have

1. out(A,) n out(Ai) = ,
2. int(A ) n acts(A ) = 0, and

3. no-action is in acts(Ai) for infinitely many i.

The composition A = II~6 Ai of a strongly compatible collection of automata A1ii6 ha, the
following components:

1. in(A) = u 6iin(Ai) \ Ui6 out(Ai), out(A) = Uiejout(Ai), and int(A) = Ui~6 int(Aj),

2. states(A) = HiEistates(A;)

3. start(A) = II~estart(Ai)

6



4. steps(A) is the set of triples (8 1,ir,s 2) such that for all i E I, if r-E acts(A,) then (Sl[i], r, S2 [i]) E

steps(Ai), and if r acts(Ai) then sl[i] = s2[i]2, and

5. part(A) = UiEipart(Ai).

Since the automata Ai are input-enabled, so is their composition, and hence their composition is
an automaton. Each step of the composition automaton consists of all the automata that have
a particular action in their signatures performing that action concurrently, while the automata
that do-not have that action in their signatures do nothing. The partition for the composition is
formed by taking the union of the partitions for the components. Thus, a fair execution of the
composition gives fair turns to all of the classes within all of the component automata. In other
words, all component automata in a composition continue to act autonomously. If a = s07i1s ... is
an execution of A, let -aAi be the sequence -obtained by deleting -rjsj when rij is not an action of
Ai, and replacing the remaining sj by sj[i].

The -following basic results relate executions and behaviors of a composition to those of the
automata being composed. The first result says that the projections of executions of a composition
onto the components are executions of the components, and similarly-for behaviors, etc. The-parts
of this result dealing with fairness depend on the fact that at most one component automaton can
impose preconditions on each action.

Lemma 2.1 Let {Ai}i 6, be a strongly compatible collection of automata, and let A =1lieAi. If a
is an execution of A, then calAi is an execution of Ai for all i E I. Moreover, the same result holds
for fair executions, behaviors and fair behaviors in place of executions.

Certain converses of the preceding lemma are also true. Behaviors of component automata can
be patched together to form schedules or behaviors of the composition.

Lemma 2.2 Let {Ai}iE be a strongly compatible collection of automata, and let A = IIeriA. Let.
P be a sequence of actions in acts(A). If PlAI is a fair behavior of Ai for all i E I, then /3 is a fair
behavior of A. Also, if ilAi is a behavior of Ai that can leave A, in state si, for all i E I, then
is a behavior of A that can leave A in a state s where s[i] = si for all i E I.

2.4 Hiding Output Actions

We now define an operator that hides a designated set of output actions in a given automaton to
produce a new automaton in which the given actions are internal. Namely, suppose A is an I/O au-
tomaton and 45 C out(A) is any subset of the output actions of A. Then we define a new automaton,
hide4.(A), to be exactly the same as A except for its signature component. For the signature compo-
nent, we have in(hide,(A)) = in(A), out(hide,,(A)) = out(A)\ , and int(hide,(A)) = int(A)U .

2.5 Specifications

To specify an entity, we give a set of acceptable patterns of interaction between the entity and its
environment. Formally,3 a specification T consists of two components:

2We use the notation s[s] to denote the i-th component of the state vector s
3 This is a special case of a schedule module as defined in (IlJ.
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1. an action signature sig(T) having no internal actions, and

2. a set behs(T) of sequences (finite or infinite) of elements of acts(sig(T)), called the behaviors
of T.

For brevity we write in(T) for in(sig(T)) and so on. We also write f31T for lacts(T).

2.6 An Automaton Satisfying a Specification

To express the fact that an entity modeled by an automaton A is satisfactory for a task modeled by
a specification T, we use the following definition: we say that A satisfies T provided in(A) = in(T),
out(A) = out(T) and also every fair behavior of A is an element of behs(T).

3 The Reliable Layer

In this section, we give a specification for the weak type of reliable layer that we wish to implement.
We assume that the reliable layer interacts with higher layers at two endpoints, a transmitting

station and a receiving station. The reliable layer accepts messages from the higher layer at the
transmitting station, and delivers some of them to the higher layer at the receiving station. In this
paper, we consider the situation in which nodes may crash, losing the information in their state.
Therefore, the specification includes events that model these crashes, and the reliability provided
is only conditional on no later crash occurring. That is, the reliable layer guarantees that every
message that is sent is eventually received, assuming that the end stations remain active. We do
not insist that the order of the messages be preserved, as discussed in Section 1.

We describe the reliable layer formally as a specification RL. Let M be a fixed alphabet of
'messages". The action signature sig(RL) is illustrated in Figure 1, and is given formally as follows.

Input actions:
send(m), m E M
crasht
crashr

Output actions:
rcv(m), m E M

The send(m) action represents the sending of message in on the reliable layer by the transmitting
station, and the rcv(m) represents the receipt of message m by the receiving station. The crash'
and crashr actions represent notification that the transmitting or receiving station, respectively,
has suffered a hardware crash failure. In the distributed implementations of the reliable layer to be
considered later in the paper, hese events will trigger the return to initial state in the appropriate
automaton. We refer to the actions in acts(RL) as reliable layer actions.

In order to define the set behs(RL), we define a collection of auxiliary properties. These
properties are defined with respect to t3 = ;,..., a (finite or infinite) sequence of reliable layer
actions, and a total function cause from the indices in t3 of rev events to the indice- of send events.
This function is intended to model the association that can be set up between the event modeling

8



crash crashr

send rcv
RL

Figure 1: The Reliable Layer

the receipt of a packet and the event modeling the sending of the same packet. This function is
needed to deal carefully with the fact that the same data might be sent repeatedly, and in that
case the sequence will contain multiple occurrences of the same action.

The first property expresses the idea that an effect (i.e., a rcv event) must occur after its cause
(i.e., a corresponding send event).

(RL1) If rj = rcv(m), 7r, = send(n), and cause(i) = j then j- < i. (That is, the event w-j precedes
7F in 9.)

The next property indicates that messages are not corrupted.

(RL2) If ri = rcv(m), -,q = send(n), and cause(i) = j then m = n.

The next property indicates that messages are not duplicated.

(RL3) The function cause is one-to-one. (That is, cause(ii) 0 cause(i2) for il 0 i2.)

So far, the properties listed have been safety properties, that is, when they hold for a sequence
they also hold for any prefix of that sequence. The final property is a liveness property asserting
when messages are required to be delivered by the reliable layer. It says that all messages that are
sent are eventually delivered, provided no later crashes occur. We use the following terminology:
a crash interval is a maximal contiguous subsequence of / not containing any crash' or crashr
events; thus, the crash intervals of are the sequences of events between successive crash events,
together with the sequence of events before the first crash and the sequence of events after the last
crash. We say that a crash interval of /8 is unbounded if it is not followed in / by a crash event.

(RL4) If 7'i is a send(m) event occurring in an unbounded crash interval in f3, then there is an
index j of an rcv event in 6 such that cause(j) = i.

We say that a sequence /3 of reliable layer actions is .RL-consistent provided there exists a
function cause such that all the conditions (RL1)-(RL4) are satisfied. We extend the use of the
term, and say that any sequence (possibly including actions other than reliable layer actions, and
possibly including states) is RL-consistent provided that the subsequence consisting of reliable layer
actions is.

Now we can define the specification RL. We have already defined sig(RL). Let beh.s(JL) be
the set of sequences /3 of reliable layer actions that are JL-consistent.

9



sendp.', rcvpu/

UL"-'

Figure 2: The Unreliable Layer

4 The Unreliable Layer

In this section, we define the strong type of unreliable layer that we assume is available for our
protocols to use.

Ve again assume that there are two endpoints, a transmitting atation and a receiving station.
The unreliable layer accepts messages, which we call packets in order to distinguish them from
the messages of the reliable layer, from the higher layer at the transmitting station, and delivers
some-of them at the receiving station. We do not consider corruption, duplication or reordering of
packets; the only faulty behavior we consider is loss of packets.

4.1 Definitions

We describe the unreliable layer formally as a specification. Since construction uf a reliable layer
will generally need-iwo unreliable channels, carrying packets in opposite directions, we parameterize
the specification by an ordered pair (u,v) of names for the transmitting and receiving stations,
respectively. The specification is denoted by UL.'. Let P be a fixed alphabet of "packets9'. The
action signature sig(ULu.1) is illustrated in Figure 2 and given formally as follows.

Input actions:
send'.(p), p E P

Output actions:
rcv-v(p), p E P

The sendp 'v(p) action represents the sending of packet p on the unreliable layer by the trans-
mitt;ng station, and the rcvjPu'(p) represents the receipt of packet p by the receiving station. We
refer to the actions in acts(ULUPt) as unreliable layer actions (for (u. v)).

In order to define the set of behaviors for the specification U"LU., we again define a collection
of auxiliary properties. The properties are defined with respect to a sequence (3 = ;1'2... of
unreliable layer actions, and a function cause from the indices in 3 of the rcve "  events to the
indices of sendpuv events. The first three properties are analogous to those for the unreliable layer.

(ULl) If ; = rcvp'v(p), = sendlf'*(q), and cause(i) = j then j < i. (That is, the event 7
precedes -i in P.)
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(UL2) If ri = rcvp"u(p), irj = sendpu-"(q), and cause(i) = j then p = q.

(UL3) The function cause is one-to-one. (That is, cause(iJ) # cause(i2) for ii l i2.)

The next property is the FIFO property. It says that those packets that are delivered have
their rcvp events occurring in the same order as their sendp-events. Note that (UL4) may be true
even if a packet is delivered and some packet sent earlier -is not delivered; -there can be gaps in the
seqhience of delivered packets representing lost packets.

(UL4) (FIFO) Suppose that cause(i) = j-and cause(k) = 1. Then i < k if and only if j < 1.

The remaining property is the liveness property for the unreliable layer. It says that if repeated
send events occur -for a particular packet value, then eventually some copy is delivered.

,(UL5) For any p,:if infinitely many sendpu-,(p) actions occur in /3, then infinitely many rcvp.,v(p)
actions occur in P3.

We say that a sequence-# of unreliable layer actions is UPu,v-consistent provided there exists a
function cause such that all the-conditions (UL1)-(UL5) are satisfied. As before, we extend the use
of the term, and say that any sequence is UPuv-consistent-provided that the subsequence consisting
of unreliable layer actions is. We have the following simple consequences of the definitions.

Lemma 4.1 1. Suppose /3 and 7 are ULU,v.consistent. Then 37 -is UL,v -consistent.

2. Suppose /3 is ULu,v-consistent and-/3' is a prefix of 3. Then /3' is ULu,v-consistent.

Now we define the specification ULu,v. We have already defined sig(UL',v). Let behs(ULUiv)
be the set of sequences /3 of unreliable layer actions that are ULU,v-consistent.

We define an unreliable channel from u to v to be any I/O automaton that satisfies UPLUi .

Thus, C is an unreliable channel if it has the external actions appropriate for-the specification, and
also every fair behavior satisfies the conditions above (for some choice of the function cause); An
unreliable channel with the-largest set of fair behaviors is called "universal"; formally, a universal
unreliable channel is an unreliable channel whose set of fair behaviors is exactly the set of ULuv -

consistent sequences.

4.2 Properties of the Unreliable Layer

In this subsection, we give some basic properties of the unreliable layer and of unreliable channels.
We first define the idea of a sequence of packets being "in transit" after a behavior of the

unreliable layer. -If /3 = ... is a finite ULI,v-consistent sequence, we say that a sequence of
packets- Q = qlq2 .. qk is in transit after /3 provided there is a function cause such- that proper-
ties (UL1)-(UL5) hold for /3 and cause, and also there are indices il, i2 , .. ik with the following
properties:

* il <i2<...<ik,

* 7r,= sendp',(qj) for each j, 1 < j _ k, and
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* for any index j of a rcvpu", event in P3, cause(j) < ii.

That is, a sequence of packets is in transit after /I if it is a subsequence of the collection of packets
sent after the sending of the last packet that is successfully delivered. Notice, as a consequence of
this definition, that if a sequence Q is in transit after PO, then so is any subsequence of Q.

Lemma 4.2 If/P is a finite ULu Uv-consistent sequence of unreliable layer actions, Q is a sequence
of packets that is in transit after P, and Q' is a subsequence of Q, then Q' is in transit after /.

Another immediate consequence of the definition is the following lemma, which says that as
further packets are sent, they can be added to the sequence in transit.

Lemma 4.3 If / is a finite ULuv-consistent sequence of unreliable layer actions, qjq2 ... qk is in
transit after /I, and q'q' .., q' is a finite sequence of packets, then the sequence

= sendpu,°(q' )sendp", (q') ... sendpu' (q')

is a ULu,u-consistent sequence and the sequence of packets qjq2 ... qkq' ... q' is in transit after/I'.

The following lemma says that, any sequence of packets in transit can be delivered without
violating the specification of an unreliable layer.

Lemma 4.4 If / is a finite U ,-'-consistent sequence of unreliable layer actions, and Q = qjq2 ... qk
is a sequence of packets that is in transit after /I, then /Ircvpuv(qi) ... rcvpu,"(qk) is a ULu,v-

consistent sequence.

Recall that a universal unreliable channel is an unreliable channel whose fair behaviors are
all the sequences allowed by the specification ULu,v, rather than merely a subset of these. For
our later work, it will be important to know that a universal unreliable channel exists. We give
the construction here, and leave it to the reader to check that this automaton has the required
behaviors. Note that no property of the automaton is used in this paper other than the fact that
it is universal.

The I/0 automaton &-, has the inputs and outputs of ULu,v, and no internal actions. The
state of 0"=' consists of a sequence queue of packets, an array count of integers indexed by packet
values, and a array keep of infinite sets of positive integers indexed by packet values. The initial
states of the automaton are those states in which q is empty and each entry count[p] is zero. Thus
each initial state is determined by a value for the array keep.

The transition relition for the automaton C,V consists of all triples (s', 7r, s) described by the
following code.4

sendp,'v(p)
Effect: counttp] <- countH] + 1

if count[p] E keep[p then append p to queue

4'This style of describing I/O automata by giving preconditions (that is, conditions on s') and effects (that is,
imperatives to be executed sequentially to transform s' to give s) is used in (12]. It is not fundamental to the model,
but is rather a notational convenience for describing sets of triples.
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rcvpuov ( p)
Precondition: p -is at head of queue
Effect: delete p from front of queue

The partition puts all:the output actions of 01,1 in a single class.
Thus, i -E keep[p] means that the i-th time packet value p is sent, it will succeed in being

delivered. The fact that each keep[p] is infinite ensures that (UL5) is satisfied by fair behaviors-of

Lemma 4.5 The automaton C,' is a universal unreliable channel.

5 Reliable Layer Implementation

In this section, we define a "reliable communication protocol", which is intended to be used .o
implement the reliable layer using the services provided- by the unreliable layer. A reliable commu-
nication protocol consists of -two automata, one at the transmitting station and one at the receiving
station. These automata communicate with each other using two unreliable channels, one in each
direction. They also communicate with the outside world, through the reliable layer actions we
defined in Section 3.

Figure 3 shows how two rrotocol automata and two unreliable channels should be connected,
in a reliable layer implementation.

5.1 Reliable Communication Protocols

We define a reliable communication protocol syntactically, as two automata that have the correct
action names to be used in a system -connected as in Figure 3.

A transmitting automaton is any I/0 automaton having an action signature as follows:

Input actions:
send(m), m E M
rcvprt(p), p E P
crasht

Output actions:
sendpl'r(p), p E P

In addition, there can be any number of internal actions. That is, a transmitting automaton receives
requests from the environment of the reliable layer to send messages to the receiving station. It
also receives packets over the unreliable channel from the receiving station r, and notification of
crashes at the transmitting station. It sends packets over the unreliable channel to r.

Similarly, a receiving automaton is any I/O automaton having an action signature as follows:

!gput actions:
rcvp* r(p), p E P
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Figure 3: A Reliable Layer-Implementation

crashr
Output actions:

sendprt(p), p E P
rcv(m), m E M

Again, there can also be any number of internal actions. That is, a receiving automaton receives
packets over the unreliable channel from the transmitting station t, and notification of crashes at
the receiving station. It sends packets to t over the unreliable channel to t, and it delivers messages
to the environment of the reliable layer.

A reliable communication protocolis a pair (At, A'), where At is a transmitting automaton and
Ar is a receiving automaton.

We close this subsection with a lemma describing a useful property of reliable communication
protocols interacting with an unreliable layer. It says-that from any point in an execution, the
system can continue to run in some way, with no further crashes nor requests for message transfer,
so that no-packets sent before that point are delivered after-it.

Recall that for any specification T and sequence P3 we write PIT for the subsequence of P
consisting of actions of T. For brevity, we say that 63 is UL-consistent provided PIULt,r is ULt" -r
consistent and PIULr,t is ULr,t-consistent.

Lemma 5.1 Let (At, Ar) be a reliable communication protocol. bet a be a finite UL-consistent
execution of A = At o Ar. Then there exists a fair UL-consistent execution ap of A such that

1. P3 contains no send or crash events, and
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2. /6 is UL-consistent.

Proof: (Sketch) The sequence P3 is constructed inductively, interleaving transitions that involve
actions from each equivalence class of the -fairness partition of A. However, whenever a sendp(p)
event- is added -to the execution, it is immediately followed by a corresponding rcvp(p) event. This
is allowed by A since rcvp(p) is an input to the composition, and UL-consistency is obviously
maintained. The dovetail ensures that the execution c/e constructed is a fair execution of A.
Since every sendp event is followed by its corresponding rcvp event, it follows that the suffix /3
UL-consistent.

5.2 Correctness of Reliable Communication Protocols

Now we are ready to define correctness of reliable commuiication protocols. Informally, we say that
a reliable communication protocol is "correct" provided that when it is composed with any pair of
unreliable channels (from t to-r and from r to t, respectively), the resulting system yields correct
reliable layer behavior.- This reflects the fundamental idea of layering, that -the implementation of
one layer should not depend on the details of the implementation of other layers, so that each layer
can be implemented and maintained independently. Formally, we say that a reliable communication
protocol (At, Ar) is correct provided that the following is true. For all Ct,r and Cr,t that are
unreliable channels from t to r and from r to t, respectively, hideP(D) satisfies RL, where D is the
composition of At, A', C' ,' and Crt, and 4 is the subset of acts(D) consisting of sendp and rcvp
actions. We need to hide the actions between the protocol and the unreliable channels in order
that the composition should have the signature required for the reliable layer5.

The definition of correctness just given is somewhat difficult to work with, because it involves
universal quantification over all possible unreliable channels. We will actually work with an alter-
native characterization, using only behaviors of the composition of A' and Ar.

Theorem 5.2 Let (At, Ar) be a reliable communication protocol. Then the following are equivalent.

1. (At, Ar) is correct.

2. For every fair behavior/ of A = At o Ar, if/3 is UL-consistent then / is RL-consistent.

Proof: Let 1 be the set of all sendp and rcvp actions. For one direction of implication, assume
that (At,Ar) is correct. Let P3 be a fair behavior of A that is UL-consistent. Let ,tr and or,t be
the unreliable channels defined in Section 4; Lemma 4.5 implies that these are universal unreliable
channels.

Since / is ULV,r-consistent, and 0t,r is a universal unreliable channel, it must be thlt /3IUL"r
is a fair behavior of 0t,r. Likewise, /UL "' is a fair behavior of or,,. Then Lemma 2.2 gives that
/ is a fair behavior of D = A o &t.r o or,?. Therefore, /I1RL is a fair behavior of hidep(D), since
the actions of RL are exactly the external actions of D that are not in 4D. Since (At, Ar) is correct
and C,' and Cr,' are unreliable channels from t to r and r to t respectively, any fair behavior of
hidet(D) is RL-consistent. Thus, /3IRL is RL-consistent, which implies that / is !/L-consistent,
as required.

5Recall that in the I/0 automaton model, actions between components of a system are outputs of the system as
a whole.
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Conversely, suppose that every for every fair behavior #3 of A, if P3 is UL-consistent, then /3
is 1?L-consistent. Let Ctr and Crt be arbitrary unreliable channels from t to r and from r to t,
respectively, and let D = A-o C',r o Crt, We must show that hidez,(D) satisfies RL.

Let /3' be an arbitrary fair behavior-of hideqx(D). Then there is a fair behavior P3 of D such
that P3' = P/IRL. By- Lemma 2.1, -3ICI'r is a fair behavior of Ct',, and since Ct,r is an unreliable
channel, /3ICI' r is UL,r -consistent. That is, /3IULt' r is ULt,I-rconsistent. Likewise, PIULt is UL r -
consistent. Thus, P3 is UL-consistent. By hypothesis, P3 is RL-consistent, and so /' is RL-consistent.
Thus, /f' E behs(RL), as required- .

5.3 Crashing Protocols

In this subsection, we define a constraint for reliable communication protocols: a "crashing" prop-
erty, which says that a crash at either the transmitting or receiving station causes the corresponding
protocol automaton to revert back to its start state (thereby losing all information in its memory).
This property models the absence of non-volatile storage.

We say that a transmitting automaton At is crashing provided that there is a unique start state
qO, that (q, crash', qo) is a step of At , for every q -E states(A'), and that these are the only-crasht

steps. Similarly, we say that a receiving automaton A' is crashing provided that there is a-unique
start state q0, that (q, crash', qo) is a step of A', for every q E states(Ar), and that these are the
only crashr steps. A reliable communication protocol (At, Ar) is said to be crashing provided that
A' and A r are both crashing.

6 The Impossibility Proof

A useful property for a reliable communication protocol would be the ability to tolerate crashes of
the machines on which it runs. We consider the case in which a crash causes all the memory at the
site to be lost; we model this by having a crash cause the automaton at that site to rewert to its initial
state. li this section, we present our impossibility result, that no correct reliable communication
protocol can tolerate arbitrary crashes (without access to some non-volatile memory).

The main idea of our proof is to assume the existence of a reliable comm:i'aication protocol
that is both correct and crashing, and to find two finite executions, a and &, that leave both the
transmitting and receiving automata in the same states, although in a every message has been
delivered and in & there is an undeivered message. The protocol must eventually deliver the
missing message in any fair extension of & in which no more crashes occur, even if no further
messages are submitted by the environment. Then a corresponding extension of a will cause some
message to be delivered, although every message sent had already been delivered. This contradicts
the claimed correctness of the protocol.

In our proof, a contains the sending and delivery of a single message, while & contains many
crash events and ends with the sending of a message that is not deliveied. The construction of &
from a is given in Lemma 6.3, using the following observation: it is possible to find a behavior that
can leave the end stations in the same states that they have after step k of the execution a, but
where a particular sequence of packets (which are received by one station in the first k steps of a)
are in transit. This is shown carefully in Lemma 6.2 by induction. The induction step (which is
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Figure 4: Illustration- for Lemma 6.1

Lemma 6.1) uses the fact that the inputs, up to step k of a, of i given station depends on outputs
of the other station up to step k - 1.

We now begin the rigorous proof, following the sketch above. We first:-estabhsh some notation.
Forx E {t,r} wedefine sothat r} E {t,r and x 96 , thatis, T= r and f= t. Forafinite
execution a-= soiris ... rns, of A' o Ar, x E {t,r}, and an integer k, 0 < k < n, we define the
following:

* in(a, x, k) is the sequence of packets received by Ax during 7rjT2... irk, the first k steps of a,

0 out(a,x,k) is the sequence of packets sent by A' during the -first k steps of a,

* state(a,x,k)-is the state of AO in- si,

o exi(a, x, k) is the sequence of external actions of A ' during 0 .it k steps of a.

Note that if a is UL-consistent, then in(a, x, k) is a subsequence of out(a, t, k - 1).
The first lemma is used for the inductive step in- the indur' ve proof of Lemma 6.2. Speaking

informally, we use it to "pump up" the sequence of packets waiting in the channels, as illustrated
in Figure 4. If a behavior can leave the system so that in transit from X to x there is a sequence
.of packets that is the same as the sequence of packets delivered across that channel in a reference
execution, then we can extend the behavior by crashing the destination staton A ' and replaying
that stations's part of the reference execution, and this can leave the system so that a sequence
of packets is in transit in the other director., equal to the packets sent by AT in the reference
execution.
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Lemma 6.1 Let (Ar, A) be a crashing reliable communication protocol. Let a = sois 1 ... .r s

be a finite UL-consistent -execution of A = A' o Ar such that no crash events occur in 7r1 ... Irn .
Suppose-x E {t ,r}, k is an integer with-0 <-k < n .n; P is a finite UL -consistent-behavior of A
with the following properties:

1. P6 can leave A in a state where the stat,* of., :,d

2. -thc sequence in(a, x, k) of packets is in -t'ium'? F~- .0 ~oX aftei.

Let -y = crashxext(a, X, k), -a sequence of of actions- A,". Then we have tile following properties
of Pvy

1. P-y is, a finite U-L-consistent behavior of A,
2. fry can -leave A in th-e state where the stcae of A' is s, and the state of A' is state(ce,X, k),

and

S. the sequence out(a,x, k) of packets is in-wansit frormrx to 5 after P-y.

P2001: As notation, let-q1, q2 etc-denote the packets such Lhat in(a, x,k) = q~q2 . .. qI. We consider
the sequence fry.

Now-flr lAx is just (PIAxT)crash(ext(a,x, k)). Since PIA2 is a-behavior of Ax, crashx is an input
of A" -that takes-Ax to-its initial state, and- ext(ce, x,-k) is the behavior of an execution fragment-of
A-v that-starts in the initial state of A' and ends in state(ce,x, k), we deduce! .bat p#,'JAx is a finite
behavior of 4 ' that can leave Ax in state state(ar, X, k).

Also, P-IIA' is just PIA-* which is a finite behavior of A' that can' leave A' in state s. By
Lemma 2.2, 6 1 is a--5nite behavior of A that can leave A in the state where the state of A' is s
and the-state of Ax is state(a,x,k).

Now -IlUL''x is rcvpx.'(q) ... rcvIf"(q,) by construction. Since Q is in transit from to x
after Pi, we see by Lemma-4.4 that 6-1PjULv is UL-t---consistent. Also, yvIUL-T"1 consists of the
sequence of sendpx.? actions in- r,7r2.. r1. By Lemma 4.3, O-IULx,2 is ULx'1-'consistent; thus, #i-I
is UL-consistent. Lemmas- 4 3 and 4.2 together imply that the3 sequence out(a, x, k) of packets is
in transit from x to c after .8-y. 0

The next lemma says that we can find a behavior that can leave the protocol in the same state
as in any suitable execution a,- and with the same sequence of packets as those sent in a in transit
ih one of the-channels.

Lemma 6.2 Let (At, A') be a crashing reliable communication protocol. Let ce = sois 1 .s.,

be a finite UL-consistent execution of A = A' o Ar such that no cra.9h events occur in 7r, .. 7. .

Suppose _x E {t, r} and k is an integer, with 0 < k < n such that either k = 0 or 7,-L E acts(Am).
Then there is a finite sequence P with the following properties:

1. /3 is a UL-consistent behavior of A,

2. PG can leave A- in the state where the state of A-' is state(r, X, k), and- Us.4- ze riJ A2 is
state(a, 2, k), and

3. the sequence out(ae,x, k) of packets is in transit from x to t after P.



Proof: We use-induction oii k.
The base case, when k = 0, is trivial, as .tafe(a,x,0) is the initial state of A", state(a,2t,O)

is the initial state of A', and out(a,X,0) is the empty sequence.. Thus, we may take P3 to be the
empty sequence of actions.

Now we suppose that -k > 0 and we assumr -inductively that the lemma is true foi- all smaller
values-of k.

If all the actions 7r,.. . ,ir are in- acts(A-), then out(a, 2,k) must be the empty sequence, and
therefore we deduce that in(ca, x, k)-is also empty. Also, state(a, 2, k) must be equal to stafr .a, ,0).
Thus the empty sequence f61 is a finite UL-consis..int behavior of A, P, can leave A' in state
state(a, X, k), an. .n(a, x, k) is in transit from_; to x after 1. We can therefore apply Lenima 6.1
-to obtain # as an exeensionof,6 1 .

Otherwise, let j be the greatest integer such that 1 < j _< k and 7rj E acts( "'). Notice that in
fact j < k, since 7rk E acts(A'). Then in(a, x, k) is a subsequence of out(a,x,j), and state(x, t, k)
must equal state(a, Xj). By using the inductive hypothesis, we get a finite UL-consisten! behavior
P3, of A, where f#I can leave A' in state state(a, ,j), and the sequence out(a, 2,j) is in transit
from t to x after i/. By Lemma 4.2, the subseqTuence in(a,x,k) is also in transit from t to x after
i81. We can therefore apply Lemma 6.1 to obtain -,0as an extension of #1g. 0

We can now use Lemma 6.2 to find a behavior of a crashing reliable communication protocol
that-can lead-to states identical to those at the end of a given execution, but in which a message
has been sent but not received.

Lemma 6.3 Let (At, At) be a crashing reliable communication protocol. Let a = s0 rjsj.. . rs
be a finite UL-consistent execution of A = At o Ar such that

beh(a)IRL - send(m)rcv(m).

Then there is a finite UL-consistent execution, &, of A with the following properties:

1. &IRL ends in send(m).
2. & ends in a state in which the state of At is state(o,t,n) and the state of Ar is state(a,r,n).

Proof: Let k d mnotc the greatest integer less than or equal to n such that irk G acts(Al). That
is, k is the inde- of the last event in a that occurs at the receiving station (since rcv(m) is an
action of A', thete is some k satisfying this description). Lemma 6.2 yields a finite UL-consistent.
behavior P' of A with the following properties! j' ci:in leave A in a state where the state of Ar is
state(a,r,k), and the sequence out(a,r,k) of packets-is in transit from r to t after P'.

Since the sequence in(a,,.,n) is a subsequence of out(a,r,k), Lemma 4.2 implies that in(a,t,n)
is in transit from r to t after P3'.

We now apply Lemma 6.1 to see that, for 7 = crasht ext(c, t, n), /3'7 is a finite UL-consistent
behavior of A, f3'7 can leave A in the state where the state of AT is state(ce,r,k) and the state of
At is state(a, t, n). We set 1 = fi'-.

We now note, using the definition of k, that state(a, r, k) = state(a, r, n). Since - is crashtext(a, t, n)
.nd ,.,t(cr,t,n)jRL = (beh(a)IA')RL = scnd(m), we have that PIRL ends-in crash'send(m). Let

-& be any finite execution of A with beh(&) = 13, that ends in the state where the state of Ar is
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state(a, r, k) and the state of At is state(a,t, n). We know that such & must exist, because /l can
leave A in the indicated state. 0

Finally we can use- the-results above to prove-our:impossibility theorem.

Theorem 6.4 There is no crashing reliable communication protocol that is correct.

Proof: Assume that (A', Ar) is such a protoco.-and -let A = A' 0 A .
First we claim that there is a finite UL-consist,:nt execution a = S07rlsl ... irsn of A such that

beh(a)IRL = send(m)rcv(m). The existence of such an a is proved by starting with an execution
of A containing the single action send(m) (which exists since A is input-enabled), and- then using
Lemma 5.1 to get a fair UL-consistent execution of A whose behavior contains send(m) and no
other send or crash events. By Theorem 5.2, the execution's behavior must be RL-consistent.
Since the action send(m) occurs in the behavior and, s followed by no crash events, property
(RL4) implies that an rcv action appears, and (RL2) shows that the action must be -rcv(m). By
(RL1), it must follow the send(m) action, ;zid (RL3) implies that no other rcv event can appear.
We obtain the -finite execution a by trurcating this fair execution after the state following the
rcv(m) event. It follows that beh(a)IRL i s-end(,4)rcv(m).

Next we appeal to Lemma 6.3 to obtair a-finite UL-consistent execution & = 30 r1s 1 ... Arksk
of A with the following properties: beh(&) ends in send(m), and state(&, x, k) =state(a, x,n) for
xE{t'r}.

By Lemma 5.1, there is a fair UL-consistent execution- of A that extends & and contains no
additional send- or crash events. The projection- of this extension on the reliable layer actions
must satisfy (RL4). Since the final send(m) of & occurs in the e :zension in an unbounded crash
interval, by-(RL4) and (RL1) the suffix of the extension after & contains a rcv event. Let a 2 be-the
subsequence of this extension, starting at the action following the end of-& and ending at the state
aft - the first following rcv event. We see that a 2IRL = rcv(m') for some m' (since the extension
contains no send-or crash events), and that a2 is UL-consistent. Also, the sequence consisting of
the final state of& followed by a 2 is an execution fragment of A.

Since a and & end in the same state both in the transmitter and the receiver, the sequence
al = a0 2 is a finite execution- of A. It is UL-consistent since each of a and a 2 are (using Lemma
4.1). Now beh(ai) RL-= send(m)rcv(m)rcv(m').

Now we use Lemma 5.1 to get a fair UL-consistent extension of a, with no additional send
c', crash events. The behavior of this extension contains exactly one send event and at least two
rcn,-events. Clearly no function cause can be found for this behavior that satisfies (RL3), so this
betav'.jr is not RL-consistent. By Lemma 5.2, this contradicts the assumption that A is a correct
crashing reliable communication protocol. 0
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